Decamethylpentasilacycloheptyne $\cdot \mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ and cycloheptyne $\cdot \mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}{ }^{1}$

Francisco Cervantes-Lee ${ }^{\text {a }}$, László Párkányi ${ }^{\text {a }}$, Ramesh N. Kapoor ${ }^{\text {a }}$, Armin J. Mayr ${ }^{\text {a }}$, Keith H. Pannell ${ }^{\mathrm{a}, *}$, Yi Pang ${ }^{\mathrm{b}}$, Thomas J. Barton ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968-0513, USA
${ }^{\mathrm{b}}$ Department of Chemistry, Iowa State University of Science and Technology, Ames, IA 50011, USA

Received 2 June 1997; received in revised form 10 August 1997

Abstract

A dimolybdenum derivative of decamethylpentasilacycloheptyne (1) was synthesized by direct reaction of the heptyne with $\mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} .1$ crystallized in the space group $P \overline{1}, a=9.386(2), b=9.866(3), c=20.178(4) \AA, \alpha=92.17(2), \beta=97.17(2)$, $\gamma=115.71(2)^{\circ}$. The acetylenic bond is lengthened from $1.213 \AA$ in the free ligand to $1.359(4) \AA$ and all the $\mathrm{Si}-\mathrm{Si}$ bond lengths in $\mathbf{1}$ are significantly lengthened upon complexation. This is due to relaxation of the ring strain as evidenced by the $\mathrm{Si}-\mathrm{C}-\mathrm{C}$ bond angles in 1 of 132.7 and 140.9° compared to 159.2 and 162.6° in the uncomplexed ring. ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ data exhibit significant downfield chemical shifts upon complexation for the Si atoms adjacent to the triple bond, with moderate upfield shifts for the other Si atoms. The related cycloheptyne $\cdot \mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(2)$ was synthesized by the reaction of cyclohepteno-1,2,3-selenadiazole with $\mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} .2$ crystallized in the space group $C 2_{1} / c, a=30.396(10), b=8.9093(3), c=16.156(4) \AA$, $\beta=115.39(2)^{\circ}$. The acetylenic bond in 2 is $1.345 \AA$, compared with a calculated value (ab initio 3-21 G*) of $1.190 \AA$ for the free cycloheptyne. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Decamethylpentasilacycloheptyne; Cycloheptyne; Molybdenum; Carbonyl

1. Introduction

Recent studies have demonstrated the stability of small ring polysilylacetylenes [1,2]. The carbon analogues, for example cyclohexyne and cycloheptyne, are only isolable as stable species when complexed by transition metal centers. Thus, complexes based upon platinum[3], zirconium [4] and molybdenum [5] have been used to stabilize cyclohexyne and related small ring cycloalkynes. We now report the reaction between $\mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$, a useful platform for complexing small ring acetylenes [5], and decamethylpentasilacycloheptyne including the complete spectral and structural

[^0]characterization of the product, $\mathrm{Me}_{10} \mathrm{Si}_{5} \mathrm{C}_{2} \cdot \mathrm{Mo}_{2}(\mathrm{CO})_{4}$ $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathbf{1})$. We also compare the structural characteristics of the complexed pentasilacycloheptyne in $\mathbf{1}$ with its carbon counterpart in cycloheptyne $\cdot \mathrm{Mo}_{2}$ $(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ (2), prepared from the reaction of cyclohepteno-1,2,3-selenadiazole with $\mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$.

2. Experimental section

All experiments were performed under an inert atmosphere in dry solvents. NMR data were collected on a Bruker NR-200 FTNMR instrument, IR data were obtained using a Perkin-Elmer 1600 FT-IR, analyses were performed by Galbraith Laboratories, Knoxville, TN.

2.1. Synthesis of $\mathrm{Me}_{10} \mathrm{Si}_{5} \mathrm{C}_{2} \cdot \mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ (1)

In a 50 ml flask 0.31 g of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2} \mathrm{CO}_{6}$ was dissolved in 10 ml of diglyme and the solution was heated to reflux for 2 h under an argon atmosphere. After this time period the solution contained $\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2} \mathrm{CO}_{4}$ a complex containing a $\mathrm{Mo}-\mathrm{Mo}$ triple bond as evidenced by the gradual appearance of CO stretching frequencies at 1889 and $1854 \mathrm{~cm}^{-1}$. The solution was cooled to room temperature (r.t.) and 0.2 g of $\mathrm{Me}_{10} \mathrm{Si}_{5} \mathrm{C}_{2}$ was added in 1 ml of THF. The solution was stirred overnight and after removal of the solvents in vacuo the red/brown residue was extracted in 50 ml hexane. This solution was concentrated to 5 ml and placed upon a $2.5 \times 15 \mathrm{~cm}$ silica gel column and the red band formed was eluted with hexane. After removal of the solvent the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to yield $0.3(60 \%)$ of 1, m.p. $172-174^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{Mo}_{2} \mathrm{O}_{4} \mathrm{Si}_{5}$ (748.91): Calc. (Found), C: 41.69 (41.20); H: 5.38 (5.12). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 0.52,0.54$, $0.73(\mathrm{Me}, 30 \mathrm{H}) ; 5.12\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}, 10 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta$ $-4.78,-3.74,2.54$ (Me); 78.8 (acetylenic C); 88.8 $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 229.7$ (CO) ppm. ${ }^{29}$ Si-NMR: $\delta-4.24,-$ $42.0,-44.5 \mathrm{ppm}$. IR (hexane) 1946, 1899, 1987, 1838 cm^{-1}.

2.2. Synthesis of cycloheptyne $\cdot \mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ (2)

This was performed in an analogous manner to that reported for the cyclohexyne complex using cyclohep-teno-1,2,3-selenadiazole as starting material $[5,8]$. A solution of $1.5 \mathrm{~g}(3.0 \mathrm{mmol})$ of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{6}$ in 15 ml diglyme was heated under reflux for 4 h . After cooling in ice, $300 \mathrm{mg}(1.5 \mathrm{mmol})$ of cyclohepta-1,2,3selenadiazole was added, and the solution was stirred at r.t. for 1 h , and then at $60^{\circ} \mathrm{C}$ for 6 h . After removing the solvent in vacuo, the residue was extracted with $3 \times 10 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the product purified by column chromatography $\left(\mathrm{SiO}_{2}, 4 \times 60 \mathrm{~cm},-20^{\circ} \mathrm{C}\right)$. The cycloheptyne complex was eluted as a brown/purple band with hexane/dichloromethane (3:1) solvent mixture. After recrystallization from the same solvent mixture, 80 $\mathrm{mg}(10 \%)$ of the pure complex was isolated, m.p. $180^{\circ} \mathrm{C}$ (d). Analysis for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Mo}_{2}$ (528.27): Calc. (Found) C, 47.75 (47.37); H, 3.82 (3.79). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 5.5$, (s, $\left.\mathrm{C}_{5} \mathrm{H}_{5}, 10 \mathrm{H}\right) ; 3.2$, ($\mathrm{t}, \alpha-\mathrm{H}, 4 \mathrm{H}$); $1.9-1.7(\mathrm{~m}, \beta, \gamma-\mathrm{H}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 231(\mathrm{CO}), 91.9 \quad\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right), 88.5$ (acetylenic C), 38.8, 31.5, $29.9\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. IR (hexane) 1976, 1919, 1910, $1845 \mathrm{~cm}^{-1}$.

2.3. X-ray structure determination for 1 and 2.

Unit cell parameters and standard deviations for both crystals were obtained by least-squares fit of 25 randomly selected reflections in the 2θ range of $15-30^{\circ}$. Intensity data were collected on a Siemens R3m/v

Table 1
Data collection and refinement details

	1	2
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{Mo}_{2} \mathrm{O}_{4} \mathrm{Si}_{5}$	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Mo}_{2}$
Formula weight	748.9	528.3
Color; habit	Purple fragment	Violet fragment
Crystal size (mm)	$0.16 \times 0.20 \times 0.20$	$0.10 \times 0.20 \times 0.30$
Crystal system	Triclinic	Monoclinic
Space group	$P \overline{1}$ (no. 1)	$C 2_{1} / \mathrm{c}$ (no. 15)
Unit cell dimensions	$\begin{aligned} & a=9.386(2) \AA, \\ & \alpha=92.17(2)^{\circ} . \end{aligned}$	$a=30.396(10) \AA$
	$\begin{aligned} & b=9.866(3) \AA, \\ & \beta=97.72(2)^{\circ} \end{aligned}$	$\begin{aligned} & b=8.909(3) \AA, \\ & \beta=115.39(2)^{\circ} . \end{aligned}$
	$\begin{aligned} & c=20.178(4) \AA, \\ & \gamma=115.71(2)^{\circ} \end{aligned}$	$c=16.156(4) \AA$
Volume (\AA^{3})	1658.6(7)	3953(2)
Z	2	8
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.500	1.775
$\mu\left(\mathrm{mm}^{-1}\right)$	0.943	1.261
$F(000)$	764	2096
Radiation	Graphite-monoch $(\lambda=0.71073 \AA)$	romated $\mathrm{Mo}-\mathrm{K}_{\alpha}$
2θ range (${ }^{\circ}$)	$3.5 \leq 2 \theta \leq 45.0$	$3.0 \leq 2 \theta \leq 45.0$
Scan type	ω	$2 \theta-\omega$
Scan speed (variable, ${ }^{\circ} \min ^{-1}$)	3.00-20.00	$3.00-15.00$
Scan range (${ }^{\circ}$)	$1.40+K_{\alpha}$ separation	$1.26+K_{\alpha}$ separation
Standard reflections	Three measured tions	very 100 reflec-
Index ranges	$\begin{aligned} & 0 \leq h \leq 10 \\ & -10 \leq k \leq 9 \\ & -21 \leq l \leq 21 \end{aligned}$	$\begin{aligned} & -32 \leq h \leq 29 \\ & 0 \leq k \leq 9 \\ & 0 \leq l \leq 17 \end{aligned}$
Reflections collected	4312	3001
Independent reflections	$\begin{aligned} & 4012\left(R_{\mathrm{int}}=\right. \\ & 1.59 \%) \end{aligned}$	$\begin{aligned} & 2579\left(R_{\mathrm{int}}=\right. \\ & 1.87 \%) \end{aligned}$
Observed reflections ($F \geq$ $3 \sigma(F))$	3534	1906
Absorption correction	Semi empirical (Ψ-scans)	
Min/max transmission	0.6650/0.9897	
Refinement method	Full-matrix least-s	quares
Quantity minimized	$\Sigma w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2}$	
Extinction coefficient, $\chi^{\text {a }}$	0.00066(9)	
Hydrogen atoms	Riding model, fix	d isotropic U
Weighting scheme, w^{-1}	$\sigma^{2}(F)+0.0007 F^{2}$	$\sigma^{2}(F)+0.0008 F^{2}$
Number of parameters	335	244
Final R indices (obs. data)	$\begin{aligned} & R=0.0258 \\ & w R=0.0353 \end{aligned}$	$\begin{aligned} & R=0.0549, \\ & w R=0.0553 \end{aligned}$
R indices (all data)	$\begin{aligned} & R=0.0399 \\ & w R=0.0416 \end{aligned}$	$\begin{aligned} & R=0.0792 \\ & w R=0.0590 \end{aligned}$
GOF	1.03	1.13
Largest and mean shift/estimated S.D.	0.069, 0.016	0.111, 0.002
Data-to-parameter-ratio	10.5:1	7.8:1
Largest difference peak (e \AA^{-3})	0.32	0.67
Largest difference hole (e \AA^{-3})	-0.24	-0.54

[^1]Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)^{\mathrm{a}}$

1	2		
Bond lengths			
Mo1-Mo2	$2.978(1)$	Mo1-Mo2	2.972(1)
Mol-C1	$2.185(3)$	Mol-C1	2.142(9)
Mo1-C2	2.280(3)	Mo1-C2	2.236(8)
Mo2-C1	2.184(3)	Mo2-C1	2.26(1)
Mo2-C2	2.217(3)	Mo2-C2	2.170(9)
Si1-Si2	$2.368(1)$	C1-C2	1.34(1)
Si1-C2	1.870(3)	C1-C7	1.50 (1)
Si2-Si3	2.361(1)	C2-C3	1.50(1)
Si3-Si4	2.351(1)	C3-C4	1.50 (2)
Si4-Si5	$2.360(1)$	C4-C5	1.55(2)
Si5-C1	1.858(3)	C5-C6	1.50(2)
C1-C2	$1.359(3)$	C6-C7	1.52(2)
Bond angles			
Mo2-Mo1-Cl	47.0(1)	Mo2-Mo1-C1	49.2(4)
Mo2-Mo1-C2	47.6(1)	Mo2-Mo1-C2	46.6(4)
C1-Mo1-C2	35.4(2)	C1-Mo1-C2	35.7(6)
Mo1-Mo2-C1	47.0(1)	Mo1-Mo2-C1	45.9(4)
Mo1-Mo2-C2	49.4(1)	Mo1-Mo2-C2	35.3(6)
C1-Mo2-C2	36.0(2)	C1-Mo2-C2	35.3(6)
Si2-Si1-C2	118.8(2)	Mo1-C1-Mo2	84.9(5)
Si1-Si2-Si3	123.79(9)	$\mathrm{Mol}-\mathrm{C} 1-\mathrm{C} 2$	76.0 (9)
Si2-Si3-Si4	118.1(1)	Mol-C1-C7	135.2(1)
Si3-Si4-Si5	113.00(9)	$\mathrm{Mo} 2-\mathrm{C} 1-\mathrm{C} 2$	68.7(9)
Si4-Si5-C1	116.8(2)	Mo2-C1-C7	133.8(1)
Mo1-C1-Mo2	86.0(2)	C2-C1-C7	132.1(1)
Mo1-C1-Si5	129.9(3)	Mo1-C2-Mo2	84.8(5)
$\mathrm{Mo} 1-\mathrm{C} 1-\mathrm{C} 2$	76.1(3)	Mo1-C2-C1	68.3(9)
Mo2-C1-Si5	135.8(3)	Mol-C2-C3	137.5(1)
$\mathrm{Mo} 2-\mathrm{C} 1-\mathrm{C} 2$	73.3(3)	Mo2-C2-C1	76.0 (9)
Si5-C1-C2	132.7(4)	Mo2-C2-C3	131.5(1)
Mo1-C1-Mo2	82.9(2)	C1-C2-C3	132.8(1)
Mo1-C2-Sil	135.2(2)	C2-C3-C4	111.4(1)
Mol-C2-C1	68.5(3)	C3-C4-C5	115.8(2)
Mo2-C2-Sil	132.0(2)	C4-C5-C6	117.3(2)
Mo2-C2-C1	70.7(3)	C5-C6-C7	118.2(2)
Si1-C2-C1	140.9(4)	C1-C7-C6	112.6(1)

${ }^{\text {a }}$ Estimated standard deviations in parentheses.
single crystal diffractometer. Background counts were taken with stationary crystal and total background time to scan time ratio of 0.5 . Intensity check reflections indicated no crystal decay. The structures were solved by direct methods and refined by anisotropic full matrix least squares for the non-hydrogen atoms. The data were corrected for Lorentz and polarization effects.

All calculations were performed on a Micro Vax II computer using the VMS version of the SHELEXTLPLUS software package. All non-hydrogen atoms were placed at calculated positions with $\mathrm{C}-\mathrm{H}$ bond distances of $0.96 \AA$ and average isotropic thermal parameters of 0.08 . No efforts were made to improve the $R w$ values by changing the weighting schemes.

Crystal data, data collection and least-squares details and other relevant crystallographic information are shown in Table 1, selected bond lengths and angles in Table 2 and atomic coordinates in Table 3.

3. Results and discussion

The reaction between decamethylpentasilacycloheptyne and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{4}$ was straightforward with no significant side products. All spectral properties are in accord with a simple complexation in which the two Mo atoms bridge the acetylenic bond. Previous studies on silylacetylene transition metal complexes illustrate that coordination produces a significant downfield shift in the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ resonance of the atoms directly bonded to the triple bond [6,7]. Thus, values of $\Delta \delta$ (the difference in chemical shift between the complexed and uncomplexed ligand) vary from 10 ppm (singly coordinated as in $\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{SiMe}_{3} \cdot \mathrm{Fe}(\mathrm{CO})_{4}$) to 20 ppm (doubly coordinated as in $\left.\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{SiMe}_{3} \cdot \mathrm{Co}_{2}(\mathrm{CO})_{6}\right)$ have been reported. The parent pentasilacycloheptyne exhibits ${ }^{29} \mathrm{Si}$

Table 3
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{3}\right)$

Atom	x	y	z	$U(\mathrm{eq})^{\mathrm{a}}$
Mo(1)	642(1)	8653(1)	3573(1)	30(1)
Mo(2)	2270(1)	6668(1)	3808(1)	30(1)
Si(1)	-1613(1)	4665(1)	2624(1)	32(1)
Si(2)	-2729(1)	4696(1)	1503(1)	49(1)
Si(3)	-1771(2)	6828(2)	898(1)	54(1)
Si(4)	$788(2)$	8801(1)	1307(1)	49(1)
$\mathrm{Si}(5)$	2329(1)	8082(1)	2110(1)	37(1)
$\mathrm{O}(1)$	-507(4)	4020(3)	4321(2)	63(1)
$\mathrm{O}(2)$	2932(4)	8666(3)	5140(2)	56(1)
$\mathrm{O}(3)$	-2476(4)	7800(4)	2537(2)	64(2)
$\mathrm{O}(4)$	-1670(4)	6771(3)	4533(2)	57(1)
$\mathrm{C}(1)$	1554(4)	7532(3)	2908(2)	29(1)
C(2)	199(4)	6386(3)	3047(2)	27(1)
C(3)	-1031(5)	3068(4)	2595(2)	51(2)
C(4)	-3277(5)	4141(5)	3131(2)	52(2)
C(5)	-2654(9)	3100(6)	984(3)	101(4)
C(6)	-4917(6)	4134(7)	1501(3)	92(3)
C(7)	-1704(8)	6114(7)	24(3)	94(3)
C(8)	-3279(6)	7616(7)	794(3)	92(3)
C(9)	1978(7)	9241(7)	595(3)	84(3)
C(10)	574(7)	10566(5)	1536(3)	78(3)
C(11)	4451(5)	9639(5)	2269(3)	63(2)
C(12)	2292(6)	6374(5)	1645(2)	62(2)
C(13)	1785(5)	10720(4)	4388(2)	52(2)
C(14)	3031(5)	10851(4)	4015(3)	54(2)
C(15)	2569(6)	11058(4)	3354(3)	56(2)
C(16)	1065(6)	11062(4)	3313(2)	55(2)
C(17)	593(6)	10880(4)	3945(2)	54(2)
C(18)	4494(5)	6864(6)	3316(3)	60(2)
C(19)	5070(5)	7574(5)	3981(3)	67(2)
C(20)	4445(6)	6428(6)	4405(3)	66(3)
$\mathrm{C}(21)$	3502(5)	5076(5)	4013(3)	57(2)
C(22)	3517(5)	5328(5)	3346(3)	58(2)
C(23)	480(5)	5048(4)	4130(2)	41(2)
C(24)	2563(5)	7986(4)	4613(2)	41(2)
C(25)	-1329(5)	8078(4)	2913(2)	39(2)
C(26)	-819(5)	7407(4)	4172(2)	38(2)

[^2]

2
Scheme 1.
resonances at $-38.2,-34.3$ and -33.3 ppm [1] whereas the coordinated ligand exhibits resonances at $-4.24,-42.0,-44.5 \mathrm{ppm}$. Thus a very large shift for the Si_{α} atom contrasts both the Si_{β} and Si_{γ} atoms which exhibit smaller low field shifts, similar to published data [6].
The reaction sequence of cyclohepteno-1,2,3-selenadiazole and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{4}$ is indicated below. The intermediate complexes are isolable, however, $\mathbf{2}$ can be synthesized in a one-pot reaction, provided that a 100% molar excess of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{4}$ is used [9]

Fig. 1. Structure of $\mathrm{Me}_{10} \mathrm{Si}_{5} \mathrm{C}_{2} \cdot \mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ (1). Hydrogen atoms are omitted for clarity. Thermal elipsoids represent 40% probabilities.
(Scheme 1).
We have compared the structure of $\mathbf{1}$ (Fig. 1) with pentasilacycloheptyne [1] using the atomic coordinates retrieved from the Cambridge crystallographic data base. The uncomplexed ligand exhibits a typical envelope structure with the acetylenic C atoms and each of the neighbouring pair of Si atoms coplanar (mean deviation from planarity for these six atoms is $0.34 \AA$). Upon complexation to the bimetallic Mo-Mo substrate all bond lengths and bond angles in the ring expand except $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Si}(5)$ and $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Si}(1)$ which contract from 159.2 and 162.6° in the uncomplexed ring to 132.7 and 140.9°, respectively, in the molybdenum complex. This effect, also observed in similar complexes produces a puckered conformation in the ring as illustrated in Fig. 2. A similar puckering was observed for

Fig. 2. Structure of $\mathrm{C}_{7} \mathrm{H}_{10} \cdot \mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ (2). Hydrogen atoms are omitted for clarity. Thermal elipsoids represent 50% probabilities.

Fig. 3. Geometry of the ligand in $\mathbf{1 .}$
the non-silicon-containing cycloheptyne $\cdot\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ $\mathrm{Mo}_{2} \mathrm{CO}_{4}$ (2, with bond angles at the alkyne bond at 132.2 and 132.9°); however, the equivalent atoms $\mathrm{Si}(3)$ and $\mathrm{C}(5)$ point in opposite directions, Fig. 3.

The length of the acetylenic $\mathrm{C} \equiv \mathrm{C}$ bond in $\mathbf{1}$ was determined to be $1.359(4) \AA$ A, significantly longer than in the non-coordinated ligand, $1.213 \AA$. In the cycloheptyne $\cdot\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2} \mathrm{CO}_{4}$ complex 2, the corresponding bond length is $1.345(13) \AA$ compared with a calculated value of $1.190 \AA$ in the free cycloalkyne (ab initio calculation at the 3-12 G^{*} level, using the Spartan computational package). These values are indicative for reduction of the $\mathrm{C} \equiv \mathrm{C}$ bond to a $\mathrm{C}=\mathrm{C}$ bond upon coordination to the two Mo atoms due to a release of steric strain within the ring upon formally changing the hybridization of the two ring C atoms from sp^{3} to sp^{2}. This is also in agreement with related non-silicon containing cyclic acetylene complexes of the (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2} \mathrm{CO}_{4}$ group. For example, the related $\mathrm{C}-\mathrm{C}$ bond length in the cyclohexyne complex is $1.35(1) \AA[5]$. Single metal coordination results in shorter, more acetylenic bonds with bond lengths centered around $1.29(1) \AA[3,4]$. The various $\mathrm{Si}-\mathrm{Si}$ bonds $(\mathrm{Si}(1)-\mathrm{Si}(2)$ $2.368(2), \mathrm{Si}(2)-\mathrm{Si}(3)$ 2.361(2), $\mathrm{Si}(3)-\mathrm{Si}(4) 2.350(2)$ and $\mathrm{Si}(4)-\mathrm{Si}(5) 2.360(2) \AA$) all significantly longer than their uncomplexed counterparts which are reported as 2.342, 2.354, 2.341 and $2.353 \AA$, respectively.

Acknowledgements

The support of the R.A. Welch Foundation, Houston, TX (Grant AH-546) and the NSF (Grant RII-8802973) is acknowledged. L.P. thanks the Central Research Institute for Chemistry of the Hungarian Academy of Sciences for granting a leave of absence.

References

[1] W. Ando, N. Nakayama, Y. Kabe, T. Shimizu, Tetrahedron Lett. 31 (1990) 3597.
[2] Y. Pang, A. Schneider, T.J. Barton, M.S. Gordon, M.T. Carrol, J. Am. Chem. Soc. 114 (1992) 4920.
[3] (a) M.A. Bennett, G.B. Robertson, P.O. Whimp, T.J. Yoshida, J. Am. Chem. Soc. 93 (1971) 3797. (b) M.A. Bennett, T.J. Yoshida, J. Am. Chem. Soc. 100 (1978) 1750.
[4] S.L. Buchwald, R.T. Lum, J.C. Dewan, J. Am. Chem. Soc. 108 (1986) 7441.
[5] A.J. Mayr, B. Carrasco-Flores, L. Párkányi, K.H. Pannell, J. Am. Chem. Soc. 114 (1992) 5467.
[6] K.H. Pannell, A.R. Bassindale, J.W. Fitch, J. Organomet. Chem. 209 (1981) 65.
[7] E. Ramirez-Oliva, J. Cervantes, F. Cervantes-Lee, R.N. Kapoor, K.H. Pannell, J. Organomet. Chem. 510 (1996) 57.
[8] (a) H. Meier, K.P. Folting, Angew. Chem. Int. Ed. Engl. 14 (1975) 32. (b) H. Meier, E. Voigt, Tetrahedron 28 (1972) 187. (c) H. Buhl, B. Seitz, H. Meier, Tetrahedron 33 (1977) 449.
[9] The details concerning the preparation and isolation of the intermediate complexes will be the subject of a forthcoming article.

[^0]: * Corresponding author. Fax: + 19157475748.
 ${ }^{1}$ Happy birthday Bruce from Ramesh and Keith.

[^1]: ${ }^{\mathrm{a}} F^{*}=F\left[1+0.002 \chi F^{2} / \sin (2 \theta)\right]^{-1 / 4} \chi$.

[^2]: ${ }^{\text {a }}$ Equivalent isotropic U defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.

